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Formulations of stationary thermal elastohydrodynamic problems for an elastoviscous 
Maxwellian fluid are proposed. The basic dimensionless parameters are identified. It is 
shown that the problem reduces to equations with finite-dimensional-operator coefficients. 
A numerical solution is given for a thermal problem for a Newtonian fluid and for an iso- 
thermal problem for nonlinear-viscous fluid. The velocity, temperature, heat flux, and 
pressure distributions and the profile of the gap in the contact are found. The theoreti- 
cal results are compared with experimental results. 

i. We shall examine the stationary problem of rolling with slipping for two elastic 
bodies pressed together by load q. The region of the contact is filled with a lubricant, 
which we shall assume to be an incompressible nonlinear-viscous liquid. Let the xl and xa 
axes of a rectangular system of coordinates lie in the plane of the contact and let the z 
axis be perpendicular to this plane; ix, i2, k are the corresponding unit vectors. Then, 
when the usual assumptions for an elastohydrodynamic contact are satisfied [I], we have 
the following problem which describes the flow of lubricant, deformation of the bodies in 
contact, and propagation of heat liberated at the contact to the bodies: 
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Here p is the pressure; ~, T2, components of the tangential stress vector; C, tensor of 
finite deformations; C = (6' - 2~) -~, where 6' is the unit tensor and E is one-half the differ- 
ence of the metric tensors in the deformed and undeformed states; x = (x~, x2), z = hj(x~, 
x~), z = fj(x~, x2), deformed and starting geometric forms of the surfaces in contact; h c 
thickness of the film at the center; u, T, 9, c, k, ~, velocity, temperature, density, heat 
capacity, thermal conductivity, and viscosity (the quantities without an index refer to the 
lubricant and those with the indices j = 1 and 2 refer to the bodies); G, high-frequency 
shear modulus of the lubricant; E'j = Ej(I -- v~), where Ej and ~i, are the elastic moduli 
and Poisson's coefficients of the materlals of the bodies; Kj, G~een's function, which deter- 
mines the normal elastic displacement of the surface of the j-th body; Uj, velocities of the 
surfaces neglecting the tangential displacements; %j, coefficients of heat transfer; ~o, a, 
B, ~, 6, constants that characterize the properties of the lubricant; ~, region of the con- 
tact, for which the input (3+~) and output (3 ~) boundaries are not known beforehand and 
must be determined from the solution of the problem; Yoj, boundaries between the bodies and 
the surrounding medium, which has a temperature To; n, outer normal; and qo, fixed flow of 
lubricant at the inlet to the contact. 

The calculation of the parameters of the three-dimensional elastohydrodynamic contact 
in the formulation given is a very complicated and laborious problem. For this reason, we 
shall investigate a number of cases when the inroduction of natural simplifications makes 
the problem more tractable and accessible to analysis and numerical solution on existing 
computers. 

2. We shall examine a contact between cylinders made of the same material, whose axes 
are parallel to the direction x2. This problem can be treated as a two-dimensional problem 
(3/3x2 = 0, C22 = i, Cx2 = Cs2 = 0). We shall assume that the characteristic time for es- 
tablishing equilibrium values of stresses in the lubricant e' is much shorter than the resi- 
dence time of a particle in the contact, and we shall neglect the convective terms in Eq. 
(1.2) for Cij. In this case, in analogy to [i], 

and the elastoviscous properties are manifested only in the nonlinear dependence of the 
tangential stress on the shear velocity 

Ou~_ a / --~-' 
Oz 

and, in addition, for the Maxwellian medium being examined f(x) = x(l -- x2) -~. We shall 
also make use of the solution of the problem of heating of cylinders with sufficiently high 
Peclet numbers and we shall take into account the change in temperature at the inlet due to 
liberation of heat in the contact [i, 2]. We shall denote x = x:, z = r:, u = ul, and the 
region of the contact a~x ~ d. Let us transform to dimensionless variables: x' = x/b, z' = 
z/ho -- (h2 -- h~)/2ho, h' = (h~ + h=)/ho, p' = p/po, z' = Tho/~oU, u' = u/U-- i, ~ = ~(T -- To), 
where Po = ~ is the maximum Hertzian pressure; b = ~ is the halfwidth of the 
contact according to Hertz; ho is the thickness of the film at x = d, where R = R~R2/(Rx + 
R2) and R~ are the radii of the cylinders; and U = (Ux + U2)/2. Green's function for cylin- 
ders repl~ced near the contact by half spaces equals K(n) = --(4/v) in lqI. since the pres- 
sure is constant across the contact zone, we shall integrate the momentum equation. As a 
result, the problem assumes the following form (the primes are dropped): 

z = t2"-V-"~"z z to; (2.1) 

Ou = e x p [ - -  Qp q - O ( t - ]  Ap )] , . 
0"~ 1 +  Np ~ t -- (F~/6) 2' ( 2 .2 )  

B (u @ 1) ~00 + A (x ~ --  d~~ ] = ~ ~- H e X P o z  "--~'- ~ f ~-QPNp @ 0  I ~ - ~  [1 _ (--F~/611~I z , ( 2 .3 )  

h @  udz = 0 ;  (2 .4 )  
--hl~ 
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d (2.5) 

H o (h - -  t) = x ~ - -  d ~ + 2~  J~ P (~) In I ~ - ~ - z  I d  -- ~ d~," 
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p ( a ) = p ( d ) = ~ ( d ) = O ,  p(g)  d ~ = n / 2 ;  
a 

h/2o ( 2 . 7 )  
u ( + h / 2 ) =  +_O,  h ( a ) +  j u d z l ~ = = - = M ;  

. --h/~ . 

e ( 2 . 8 )  
Pk  ~o~ ~ ~ o o  ( ~ , •  O ( + h / 2 )  = ~ j j - g - f ( ~ , ~ h / 2 )  -~Bki  -g-fz 

where zo, = ~(x, 0). The formulation of the problem involves the following dimensionless 
parameters (we shall denote the entire collection of parameters by Hi): 

V = 3 r ~ ~  
q2 , 

N = Q  q -~-IL A = ga-• 

A-- R 1 -  Rz t M =  _qo, 
B 1 + B 2 2H o ' ~ o  

k b p,-1/2 
Pkj  = k--j-~o "J ' 

k b 
Bkj - ~ 2 ~  ~ Bib-l,, 

o5 qEr 
Q = V 2JrB" 

F = 6rt~ B = pcUh~ 
Gh o ' bk ' 

U o - -  U 1 
k ' 2U ' 

I)eJ _ p~cjUjb Peeler number. 
ki 

Bij = Rj~j Blot number. 
ki 

The last of conditions (2.6) serves to determine the dependence Ho = Ho(Hi), after which for 
given values of the physical parameters of the problem, the previously unknown quantity 
ho = Hob2/2R is found. The basic characteristics of the elastohydrodynamic contact can be 
represented as follows: maximum and average thickness of the lubricating film, 

r 

hmin = hohmin (Hi )  , h ,  hob , (H0; 

boundaries of the contact region, 

(2.9) 

b ! t a = a (110, d = bd (Hi); 

tangential force acting on the j-th cylinder, 

(2.10) 

Xj = ( - - l ) J+lKtq ,  

where the coefficient of friction Kf has the value 

_ ~ . V Todx ; K !  - -  b L= z, E) p'x"dx' + 
a t 

(2.11) 

(2.12) 

and heat flow from the lubricant into the cylinders and the maximum temperature of the lubri- 
cant 

dr 

qwj = ( -  1) '+1 ~ o  q; (II3, qj --  j oz' 
~t r 

Tmax = ~-lOm.x (IId. 

The dimensionless functions marked with a prime on the right sides of (2.9)-(2.13) are deter- 
mined from the solution of the problem (2.1)-(2.8). 

3. Let the temperatures ofothe surfaces be fixed O[x', (--l)Jh/2] = Oj and N = 0. 
We introduce the variables t = -- O, y = z/(h/2), ~(x, y) = t[x, (h/2)y](• + Ap), $o = 
~o/2h, ~ = (Ox + 02)/2, S = (02 -- 01)/2. In so doing, K c will be replaced by uo in ~ = 
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~oe -~. Let us integrate 
obtain the relation 

(2.2) across the layer, and using the boundary conditions (2.7) we 

1 

2 0  = e-OPh2 / ~o, P, "-~z ' h, y; Ho, V, F e~dy, 
--1 

= ~ Y + x ]  j , 

which determines ~o in the form of the functional 

~0 = 3~ ~; h, p, ~-z, H0, V, F, � 9  (3. i) 

Having found the velocity u from (2.2), we obtain the equations 

B - -O--~h~e-Qp ](3(p) etdy [Ox + h oy t ~ :4p  ~xJ ( 3 , 2 )  
--1 

~ §247 = ~ + 4H (t k v ax 

~(-4-1) = ~ S ( t  q-- Ap) ,  ~(a) = --#; (3 .3 )  

eh ~ e-  QPh 2 (3 .4 )  dx / (3~) ye:dy = O. 
--1 

E q u a t i o n  (3 .2 )  and t h e  c o n d i t i o n s  (3 .3 )  d e t e r m i n e  t h e  t e m p e r a t u r e  ~(x ,  y ) ,  w h i l e  Eq. (3 . /4) ,  
which i s  t h e  a n a l o g  o f  Reyno lds  t e q u a t i o n  f o r  a n o n i s o t h e r m a l  n o n l i n e a r - v i s c o u s  l i q u i d ,  t o -  
g e t h e r  w i t h  c o n d i t i o n s  ( 2 . 6 )  and second  c o n d i t i o n  ( 2 . 7 ) ,  can  be  used  to  f i n d  t h e  p r e s s u r e  
p (x )  and t h e  c o n s t a n t s  a ,  d, and Ho. The t h i c k n e s s  o f  t he  f i l m  h (x )  i s  c a l c u l a t e d  f rom ( 2 . 5 ) .  

4. Tn t h e  l i m i t i n g  c a s e  o f  a Newtonian  f l u i d  (F = 0 ) ,  we have  t h e  e x p l i c i t  e x p r e s s i o n s  

o dp 6A (x 2 d 2) dp. 
[ 0 =  2 0 h  "e p - - 3 - W - ~ x  Q~ Qo 1 -  h dx'  (14.1) 

u (x, y) = - -  0 -~- 2(O e~dy _L _ _  x[ Qo ye~dy - -  Q1 e~-dy , (14.2) 

where (, ,,) ,(, 
, v =  . ~ - w  o Q2)' 

1 

OJ = l j" yJ~:du, Q; = Oj Ix=d. 
--1 

Using (4.1) and (4.2), Eqs. (3o2) and (3.4) can be written in the form 

2q~ 2q~ B ~--r e ~ y + ~ ~ r "  Qo ye~dy--Q~ e~dy x 
--1 --I 

[ O~ 2A (x'~ --  d2) O~ A~ 2 V e(Q-A~)P Qo (7i) ] 02~ 

( ' e(Q-A~)P+~ y - -  Q1Qo ~"; 

--QtQo "] 

dp 2 V e (Q-A~)p Qo 09 .~. 
d--i = -~- "~. " h 2 2 

Ho QoQ2 -- Q1 

(4.3) 

(4.4) 

332 



Analogous equations with A = B = 0 were obtained in [3]. For high rolling velocities, the 
liberation of heat due to compression of the lubricant becomes significant [4]. It can be 

( ~ @@@6T0)~--Px on the right side of (4.3) taken into account by adding the term X(l @ u ) , ~  _ 

where Z: 4-~R and eo -- is the coefficient of thermal expansion. 
P 

However, for moderate rollingvelocities, this factor can be neglected [4]. If, in addition, 
the slipping velocity (i.e., the parameter }), is significant, then the terms related with 
convective heat transfer can be dropped, i.e., we can set B = 0 in (4.3), dropping simultan- 
eously the last condition in (3.3). 

5. For convenience in carrying out the numerical solution of the system (4.3), (4.4), 
(3.3), and (2.6) at A = B = 0 and fixed aj we shall differentiate (4.4) with respect to x 
and we shall also use a different method for putting p and x into dimensionless form which 
eliminates the need to satisfy the last condition (2.6). For this, we refer the pressure 
and longitudinal coordinate, respectively, to 12~oU~/h~ and ~ and we denote L = 

2 ~ 2  12~o~U 2Rho/ho, D = 96~oUR/(~E h o ) .  Then, we obtain 

02; --  - -  4H~ci)2 ~ (t ' ~F) ( y  - -  Q I Q o l ) 2 ( Q z Q o  i -  Q~Q~-2)-2; 

d 

ddx h3e-Lpr (~; p' h) + ~ (~; p, h) = 2x § D ~ ~ ,  

g 
d 

h =  t-I- x2--dZ--~"  D S p ( ~ ) l n ~ ' ~ _  d~; 

dp 
p ( a ) = p ( d ) = ~ x  (d)----O, ~ ( •  

r (;; p, h) = 3 e o O ~ -  OF * - r  0o 2 Oo-- qbQ1 o) (~; p, h) = Oo 
' Oo -- QDQ1 "~-" 

(5.1) 

(5.2) 

(5..3) 

(5.4) 

integral in (5.3). 
the form 

To solve (5.1)-(5.4) numerically, we introduce a grid {Xn, ym }, n = i, ..., N, m = i,..., 
M, x~ = a, Yl = --I, x M = d, YM = i which is nonuniform in the x direction. For a pressure 
given in the form of a piecewise linear function, the distribution ~(y) was found in each 
section x = x_ by solving the boundary value problem for Eq. (5.1) numerically using the 

a f Runge--Kutta method and inding the first derivative at y = -- i. The quantities Qj(xn) de- 
termined were then used to solve the system of nonlinear difference equations approximating 
Eq. (5.2), using Newton's method. The value of h is given by a finite sum, replacing the 

The difference scheme represents the generalized schemes in [5] and has 

p- 

Determining the quantity P = Jpdx, 
starting parameters a 

2 [ h 3 .,~r. :- l- h3 lloF~ - _, - '~--.tl~ ~--1, z i-- . "--1/2 
(xi+l  - -  ~ci--1) eLPi/2 IPi--1 (xi _ xi--1) eLPi--1/2 Pi  [. (x i --_ --Xi_l ) --eLP, 1/2 ~- 

' h3 } i+~/2r~+1/2 . i.l_l/21~i_F1/.2 ] ~3 
-~ - -  LPi+l/2 -~ P i + l  -~ (0)i+1/2 - -  0)i--1/2) 

(xi+ 1 - x i ) .  J (xi+~ - :~) eLPi+l/' 

N ! [ ( ' - ' ' - ' )  
- -  D Ph-1 . . . . .  In 1 .-~ 

=~ Xh - -  Xk_ 1 Xh_ 1 - -  x i 

Pi "~- P i •  xi + x i •  

n~• = h (x}+j/2, P2 . . . . .  P ~ - O ,  Yi:t:l/~ = Y (Pi+l/2, h~+~/~), 

i = 2 . . . . .  N - -  t .  

d 
from the results of the solution we can  transform to the 
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2 L V ~ _ . ~  u l 1 Q = --~- V = y - - ~ . ~ ,  H o =  ' D P "  

The r e s u l t s  o f  t h e  n u m e r i c a l  c a l c u l a t i o n s  a r e  p r e s e n t e d  i n  F i g .  1 - 4 .  I n  F i g .  1 ,  t h e  c o n t i n -  
uous  l i n e s  show g r a p h s  o f  t h e  q u a n t i t i e s  p .  1 0 - "  (N" m - 2 )  a n d h  (~m) f rom t h e  s o l u t i o n  o f  t h e  
h e a t  p r o b l e m  w i t h  L = 5,  D = 1 . 6 ,  H = 0 . 5 ,  r = 0 . 2 5 ,  and  S = - - 0 . 1 .  I t  i s  e v i d e n t  f r o m  a 
c o m p a r i s o n  w i t h  t h e  known [5]  i s o t h e r m a l  s o l u t i o n  f o r  t h e  same v a l u e s  o f  L and  D ( d a s h e d  
l i n e )  t h a t  t h e  i n f l u e n c e  o f  t h e  t h e r m a l  e f f e c t s  on t h e  p r e s s u r e  d i s t r i b u t i o n  i n  t h e  c o n t a c t  
is not significant. At the same time, heat-induced thinning of the lubricating film is ap- 
preciable, especially at the inlet section. The physical parameters, in this case, have the 
following values: q = 2" 105 N' m "=, U = i0 m" sec -I, R= 2.3-10 -2 m,h =0.32 Dm, E '= 2.28" 
i0 ~I N. m -=, ~o = 5.7"10 -3 N'sec "m-=, ~ = 6.6"10 -9 m='N -2. Figures 2and 3show the distri- 
butions of the dimensionless temperature ~a along the center line of the film and dimension- 
less heat flow qj = (~/~z) i on the upper (y = i) and lower (y = --i) boundaries of the con- 
tact for the cases L = 5, D-= 1.6, H = 0.5, r = 0.25, S = --0.i (continuous line) and L = 6, 
D = i.i, H = ~ = 0.i, S = --0.i (dashed line). The corresponding functions are nonmonotonic. 
Sharp peaks in heat flow near the inlet zone are characteristic. The heat flow in almost 
the entire extent of the contact zone in the less heated body exceeds the heat flow in the 
more heated body, which agrees with the approximate analytic solution of the problem [i]. 
The quantity q. is assumed to be positive if the heat flow is oriented from the lubricant 
into the body. 3 According to Fig. 3, within a small section near the outlet zone, and for 
the dashed curve in the inlet section as well, heat is transferred from the more heated body 
into the lubricant. The temperature profiles ~(y) and the reduced longitudinal velocity 
u(y) in different sections x = const are shown in Fig. 4 (curve I, x = -- 2o17; iI, x = 
-- 1.67; III, x = --I.ii; IV, x = 0; V, x = 0.57). It is interesting to note that in the 
inlet section there is a region where u < -- I, i.e., the velocity near the axis of the con- 
tact is negative, and there is a reverse flow, in which the lubricant moves in a direction 
opposite to the rolling motion. Comparison of the computed values of the minimum thickness 
of the film with the experimental data [6] for diether oil (a = 8.2" i0 -9 m 2 " N -~, ~o = 
9.08" i0 -3 N. sec.m-=) shows satisfactory agreement between the heat theory and experiment 
(Fig. 5). For comparison, the dashed line in Fig. 5 shows the result of a calculation of 
the thickness of the film using Grubin's equation. We note that in [7] the thermal elasto- 
hydrodynamic problem is solved numerically with the introduction of a number of simplifying 
assumptions (for example, it was assumed in [7] that the viscosity of the lubricant is con- 
stant across the layer). 

6. Let us examine a two-dimensional isothermal problem for a nonlinear-viscous lubri- 
cant. In this case, the functional (3.1) gives the expression 
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3[, /  hp= V_ ] ~~ [ i+(shyS,]) p~cth(~SF) 'S=2*FeL'p~'j 
Relations (6.1) and (3,4) permit w r i t i ng  out e x p l i c i t l y  a Reynolds equation 

F2 dx ~--- f f {he-LPP~' [ I - -~FSoth(~FS)]  - 

F _  1 ch -~- FS V t + (FPxh)Z sh -2S  + sh S - -  FPxh s h - a S  

- -  - 4 - e /PP~-" ln  t + 
-~- 3p x oh(~"S)Vt+(FPxh)2sh-2~--shS--FPxhSh-1, 

(6.1) 

(6.2) 

in the case of pure rolling (@ = 0), we find from (6.2) 

J_ f ~. dh d ~ {)-.LP --1 [ 
3 dx dx t p~ [0'5 (p~F) -1 I n  

~+FhV~ ]} 
t - - F h p ~  h . ( 6 . 3 )  

The numerical solution of (6.3), (5.3), and (5.4) was obtained by a method based on [5]. 
The resulting pressure distribution and fi~ thickness for L = 6.5 and D = I.i are sho~ in 
Fig. 6 for F = 0.122 (continuous line). Comparison with the solution for a Newtonian fluid 
(F = O) shows that for the chosen values of the par~eters, the nonlinear-viscous effects 
are important only for the pressure distribution in the region with the highest pressure grad- 
ients and leads to a decrease in the second peak in the pressure. Of course, the effect of 
nonlinear viscosity on friction is very large. In Figs. 2-4 and 6, the pressure is scaled 
to Po, the longitudinal coordinate is scaled to b, and the thickness of the film is scaled 
to ho. 

7. We shall obtain the the~al analog of the Reynolds equation for a Newtonian l~ri- 
cant at the contact of three-dimensional elastic bodies. In this case, we have (i = i, 2) 

_() T~ = ~ (p,  T) "-bT' pc (u,  V~2T) = k ~ ' Ou 
Oz ~ ~ T, ~ , 

h j ( x .  x~) = - f .  h , ~ . . . .  
uEj V ( x ~  _ ~)2 + (x 2 _ n)~ g ~  p (~' n) d~dn. 
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Since the components of the tangential stress factor equal 

ap 

the velocity components can be calculated from the equations 

u~ = U~ ~- z~ § ~oi t~ (p, r)" 

Satisfying the sticking condition at z = h2, we obtain the expressions 

h 2 

u~-u~l = ~ ' ~ 
--h I 

from which the quantities Toi are determined in the form of the functionals 

"vo~ = ~i T,  p ,  -g~-xi , h i ,  h 2 . 

(7.1) 

(7.2) 

Substituting (7.1) and (7.2) into the equation of continuity leads to a Reynolds equation 
for the pressure 

h: ] 
u~ ~ + u~ ~ o~ ~ ---- o. 

_hl 

Y. 
i=l 

The temperature distribution must be determined from the equation 

All relations at a given point are written in dimensional variables. When transforming to 
dimensionless quantities, it is necessary to use the maximum pressure Po at the contact and 
the characteristic sizes a and b of the region of contact w, which in each specific case are 
determined from the solution of the corresponding contact problem of the theory of elastic- 
ity. For example, for a Hertzian contact, ~ is an ellipse with semiaxes a and b and the 
maximum'pressure is po = 3q/2~ab. 

The thermal analog of the Reynolds equation obtained above is applicable to contact 
interactions in ball and roller bearings, slipping bearings, gears, and also contact of a 
piston ring with the cylinder in an engine. 
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AN EXPERIblENTAI, AND THEORETTCAt~ INVESTiCATION OF THE 

STABILITY OF A LINEAR VORTEX WITH A DEFORMED CORE 

V. A. Vladimirov, L~ Ya. Rybak, 
and V. F. Tarasov 

UDC 532.527+532.516 

Experiments and a mathematical model of the instability of a linear vortex subject to 
deformation such that the streamlines are nearly ellipses with small eccentricities are 
described in the report. The tests were carried out with a draining-vortex type of flow in 
a cylindrical vessel with an elliptical cross section. The wavelengths and rotation rates 
of unstable modes were measured. An analytical model of the instability is proposed, based 
on linear theory using perturbation theory relative to the smallness of the deformation. 
According to this model, the mechanism of the observed instability is analogous to the insta- 
bility of a wave of finite amplitude in a three-wave interaction [i, 2]. The predictions of 
the model explain the experimental results fairly well. 

These tests can be considered as a generalization of the experiments of [3, 4] on the 
stability of initially rigid-body rotation inside an elliptical cylinder after it is stopped. 
The proposed theory of the phenomenon can also be considered as a generalization of that of 
[5], in which the question of the stability of a linear vortex in an unbouded fluid was in- 
vestigated. The core of the vortex was assumed to be subject to deformation such that the 
shape of its cross section is close to an ellipse with a small eccentricity. The method of 
solution of [5] is used below. A theory for the above-mentioned experiments was constructed 
in [3, 4] on the basis of the assumption that the vorticity is constant. In contrast to the 
present work, Galerkin's method was used. Thus, the results of [3-5] comprise two different 
limiting cases of the problem under consideration. 

i. Let us consider the plane stationary flow of an ideal fluid, consisting of a linear 
vortex with a core of constant vorticity, which is inside a cylindrical vessel. Outside the 
core the flow is potential. The shapes of streamlines and of the boundary of the normal 
cross section of the vessel differ little from circles. The quantity e << i serves as the 
measure of this difference. In the cylindrical coordinate system (r, 6, z) we assign the 
flow in the form of expansions in powers of the parameter e, 

U (r, 0) = - -  er s in 20 - 6 0  (e2), ] 

V (r, 0) r - -  ~r cos 20 § O (e~),~ 0 < r ~< R~ (0), 
P (r, O) = ( I /2 )r  2 -6 O (as), J 

O(r, 0) = 0 - -  (e/4)(r ~ - -  r -S) sin 20 6 O(e~), Rx(O) <~ r <~ Rz(O), 

where R1(e) and Ra(0) give the boundaries of the vorticity core and the vessel, 

RI(0 ) = t -6 (~/2) cos 20 -6 0(~2), 

B~(0) ---- b i t  A (s/4)B cos 20 -60 ( s~ ) ] .  

(i.i) 

(1.2) 

The radial and angular components of the velocity and pressure inside the vorticity core are 
designated as U, V, and P; ~ is the velocity potential outside this core; b is a constant 
equal to the vessel raidus in the zeroth approximation (b~ i); B = b 2 + b -2. A system of 
units is used in which the vorticity in the core equals zero while the unperturbed radius 
of the core equals one. The first two terms of the expansion of the exact solution obtained 
in [6] (cited in [5]) are written out explicitly in (i.i) and (1.2). These expansions can 
also be obtained by a direct solution of the equations of motion by successive approximations 
satisfying the conditions of n0npenetration at r = R=(0). 
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